Teksvideo. untuk melakukan pembuktian induksi matematika terdapat langkah-langkah berikut ini jika p n merupakan pernyataannya maka pertama kita buktikan bahwa benar untuk N = 1 lalu kita asumsikan PN benar untuk n = k dan kita buktikan P enakan benar juga untuk n = x + 1 jika p benar maka p k + 1 benar untuk X lebih besar = n sekarang kita lihat bahwa ini merupakan pernyataan nya untuk N = 1
Jawabanpaling sesuai dengan pertanyaan Buktikan dengan induksi matematika bahwa 1^(2)+3^(2)I+5^(2)+7^(2)+dots+(2n-1)^(2)=(1)/(3)n
Buktikanbahwa : 1+3+5++ (2n-1) =n2 - 30513181 gunturaldiand399 gunturaldiand399 27.07.2020 Matematika Iklan wiyonopaolina wiyonopaolina Pernyataan 1 + 3 + 5 + (2n - 1) = n² adalah terbukti benar. Hal ini dibuktikan bahwa pernyataan bernilai benar untuk n = 1 dan pernyataan terbukti benar untuk n = k + 1 jika pernyataan benar untuk n
. ayx04dk8xf.pages.dev/429ayx04dk8xf.pages.dev/358ayx04dk8xf.pages.dev/236ayx04dk8xf.pages.dev/241ayx04dk8xf.pages.dev/116ayx04dk8xf.pages.dev/330ayx04dk8xf.pages.dev/139ayx04dk8xf.pages.dev/392
buktikan bahwa 1 3 5 7 2n 1 n2